B. MAUCLAIRE

FICHE PÉDAGOGIQUE D'UTILISATION DE Celestia EN CLASSE DE 4^e

1 Travail à effectuer par les élèves :

Dans le programme actuel d'optique de 4^e, les élèves étudient la structure du Système Solaire ainsi que le couple Terre-Lune. Pour faire connaissance avec ces derniers, ils vont alors aller à la pêche aux informations à l'aide du logiciel *Celestia*. En l'occurence, trouver le rayon de chaque planète et la distance les séparant du Soleil. Ils pourraient alors remplir le tableau suivant :

Nom : Prénom :

Planète	Diamètre (km)	Distance au Soleil (ua)
Mercure		
Vénus		
Terre		
Mars		
Jupiter		
Saturne		
Uranus		
Neptune		
Pluton-Charon		

Cependant, les valeurs des distances mesurées peuvent ne pas concorder avec les tables trouvées dans la littérature[5][4]. En effet, ces dernières décrivent les distances moyennes des planètes par rapport au Soleil. Or les orbites étant elliptiques, à une date *t* cette distance peut être légèrement différente. Il est donc nécessaire de procéder au reprérage soi-même la veille du cours pour pouvoir effectuer une correction juste des copies rendues.

Pour ce faire, ils doivent lancer la fenêtre "Solar System Browser" située dans le menu "Navigation". Ils ont alors accès à tous les corps du Système Solaire. N'hésitez pas à essayer vous-même tout en vous laissant guider par cet article.

janvier 2004

/20

Classe:

FIG. 1 – Fenêtre de navigation céleste.

1. Pour connaître le rayon, ils devront sélectionner une planète et cliquer sur "Go To". Le rayon de cette dernière est alors visible dans le coin supérieur gauche de la fenêtre d'affichage ;

FIG. 2 – Lecture du rayon de la planète.

- 2. Pour déterminer la distance séparant une planète du Soleil, ils devront alors :
 - a) Lancer la fenêtre "Star Browser" à partir du menu "Navigation" et sélectionner "Sol" dans la liste des corps, puis "Go To";
 - b) Cliquer ensuite sur la planète voulue dans le fenêtre "Solar System Browser". La distance apparaît alors dans le coin supérieur gauche en unité astronomique.

Les manœuvres sont simples et permettent ainsi de faire le tour du Système Solaire tout en se réjouissant du spectacle offert par ce logiciel.

Remarque : si la classe présente des difficultés de façon générale, demander alors la distance planète-Soleil en unité astronomique qui est obtenue par lecture directe.

s	tar Browser						X
	Name Sol Protesna Rigel Kentaurus B Rigel Kentaurus A Barnard's star Lalande 21185	Distance (ly) 0.000 4.224 4.224 4.224 5.941 8.315	App. mag -28.47 11.01 1.35 -0.01 9.54 7.49	Abs. mag 4.83 15.45 5.79 4.43 13.24 10.46	Type G2V M5V K1V G2V M4VI M2V		Center Go To Refresh
	Sirius Ross 154 EPS Eri Ross 128 HIP 57548 61 Cyg B 61 Cyg A Procyon Lacaille 9352 Up 12720	8.602 9.693 10.494 10.730 10.891 11.358 11.358 11.409 11.635 11.635	-1.44 10.37 3.72 7.35 11.12 6.05 5.20 0.40 8.09	1.46 13.00 6.18 9.76 13.50 8.34 7.49 2.68 10.33	A0 V M3 V K2 V M2 V M4 V K7 V K5 V F5 IV M1 V	~	ок
	Star Search Criteria Maximum Stars D	isplayed in List	100	Nearest Brightest With planets			

FIG. 3 – Sélection du Soleil et validation du choix.

		191.1.9			120.1.0				A.4409
.9	Celestia								
Eile	<u>N</u> avigation	<u>T</u> ime	<u>R</u> ender	⊻iew	Locations	<u>H</u> elp			
Ve Dist Rad	nus ance: 0.760 ius: 6052.00	au " 10 km							·
			K						
So	lar System	Brow	ser				X		
s	olar System O Sun Mercury Venus	bjects			^	Cer Go	nter To		
	Earri Mars Jupiter Saturn Uranus Neptune Pluto College								
	- Galleo - Ceres - Pallas								
	- Juno - Vesta - Gaspra				~	0	ĸ	Star Browser	Dista
							•	Sol Proxima Rigel Kentaurus B Rigel Kentaurus A	

FIG. 4 – Lecture de la distance de la planète au Soleil.

2 Extensions possibles du travail avec les TICE :

Il est évident que pour l'élève le calcul des diamètres et la conversion des unités astronomiques en kilomètres est une tâche répétitive. L'utilisation d'un tableur tombe alors à point nommé, d'autant plus que sur le portable est présente la suite bureautique *StarOffice* ©. Une version libre de cette dernière est disponible sur Internet : c'est *OpenOffice* [7].

Ainsi, en disposant dans la colonne A le nom des planètes, dans la colonne B le rayon, dans la colonne C le diamètre en kilomètres, dans la colonne D la distance en unités astronomique et dans la colonne E

la distance en kilomètres, l'élève pourra être initié à la programmation de formules dans un tableur. Ceci contribue ainsi à ses connaissances vis-à-vis du B2I. Si la ligne nº 1 contient le label des grandeurs, on procède alors ainsi :

- 1. Mettre dans la cellule C2 la formule : =B2*2;
- 2. Mettre dans la cellule E2 la formule : =C2*149608000;
- 3. Copier la cellulle C2 pour les huit autres cellules de la colonne C;
- 4. Copier la cellulle E2 pour les huit autres cellules de la colonne E.

File	Edit	View Inser	t Format To	ols Data Windo	w Help						
/home/mauclair/Latex/Articles/Celestia4ieme/IV											
Helvetica 🔽 10 ▼ B i U 🐴 🗉 Ξ Ξ Ξ 🗐 🛷 % 🍄 🗔 🕮 🤕											
E3 Σ = =D3*149608											
		A	В	С	D	E					
<u>×</u>	1	Planète	Rayon (km)	Diamėtre (km)	Distance (ua)	Distance (km)					
	2	Moreuro	2440.000	=2*R2	0.403	=D2*149608					
	2	Intercure	2440,000		0,400	-02 140000					
<u></u>	3	Venus	6052,000	12104,000	0,758	113402,864					
*	2 3 4	Venus Terre	6052,000	12104,000 12756,000	0,758	1134U2,864 1133198,592					

FIG. 5 – Formules dans un tableur.

Apparaîtront alors les résultats calculés automatiquement.

Par ailleurs, les élèves pourront ensuite mettre en page les résultats de leur recherche à l'aide du traitement de texte de la dite suite bureautique. Ceci valorisera alors grandement leur travail.

3 Conclusion :

Les TICE permettent d'exporer une nouvelle dimension dans l'enseignement des sciences physiques. Bien que des formations commencent à être délivrées aux professeurs, l'utilisation de l'informatique par les élèves reste trop marginale et l'usage des logiciels libres, souvent de qualité, encore plus.

Celestia est un logiciels riche de ressources aux multiples applications possibles. Il nécessiterait un bouquin à lui seul ! Il ne faut donc pas rater une occasion de l'utiliser même si une version francophone[1] n'est pas encore disponible. *Celestia* mériterait d'être un logiciel certifié RIP¹ tant ses fonctionnalités correspondent aux besoins du cours.

Mais *Celestia* n'est pas le seul logiciel libre qui vaille la peine d'intéresser les Corps d'Inspection et ces derniers sont trop souvent délaissés malgré leur disponibilité en libre téléchargement.

Alors, Celestia et d'autres logiciels n'attendent que vous. À vos souris !

^{1.} Produits Reconnus d'Intérêt Pédagogique : http://pedagogie.ac-aix-marseille.fr/ress_4/liste_RIP.htm

4 Bibliographie :

Références

- [1] Site de la documentation française de Celestia. http://www.framasoft.net/article1134.html.
- [2] Site de logiciels pour l'éducation en sciences physiques. http://www.science.physique.free.fr.
- [3] Site de vidéos réalisées avec Celestia. http://www.astrobgs.dyndns.org/ astro2/celestia/video/.
- [4] Agnès ACKER. Astronomie introduction. Masson, first edition, 1992.
- [5] Jacques JOURDAN, Jean-Claude LAGACHE, Jean-Pierre ODABACHIAN. *Physique Chimie 4ième*. Hatier, 1999.
- [6] Site officiel de Celestia. http://www.shatters.net/celestia.
- [7] Site officiel d'OpenOffice. http://www.openoffice.org.